In physics and astronomy, a frame of reference (or reference frame) is an abstract coordinate system, whose origin, orientation, and scale have been specified in physical space. It is based on a set of reference points, defined as geometric points whose position is identified both mathematically (with numerical coordinate values) and physically (signaled by conventional markers).
For n dimensions, reference points are sufficient to fully define a reference frame. Using rectangular Cartesian coordinates, a reference frame may be defined with a reference point at the origin and a reference point at one unit distance along each of the n coordinate axes.
In Einsteinian relativity, reference frames are used to specify the relationship between a moving observer and the phenomenon under observation. In this context, the term often becomes observational frame of reference (or observational reference frame), which implies that the observer is at rest in the frame, although not necessarily located at its origin. A relativistic reference frame includes (or implies) the coordinate time, which does not equate across different reference frames relative motion to each other. The situation thus differs from Galilean relativity, in which all possible coordinate times are essentially equivalent.
In this article, the term observational frame of reference is used when emphasis is upon the state of motion rather than upon the coordinate choice or the character of the observations or observational apparatus. In this sense, an observational frame of reference allows study of the effect of motion upon an entire family of coordinate systems that could be attached to this frame. On the other hand, a coordinate system may be employed for many purposes where the state of motion is not the primary concern. For example, a coordinate system may be adopted to take advantage of the symmetry of a system. In a still broader perspective, the formulation of many problems in physics employs generalized coordinates, normal modes or eigenvectors, which are only indirectly related to space and time. It seems useful to divorce the various aspects of a reference frame for the discussion below. We therefore take observational frames of reference, coordinate systems, and observational equipment as independent concepts, separated as below:
In very general terms, a coordinate system is a set of arcs xi = xi ( t) in a complex Lie group; see
. Less abstractly, a coordinate system in a space of n-dimensions is defined in terms of a basis set of vectors { e1, e2,... en}; see As such, the coordinate system is a mathematical construct, a language, that may be related to motion, but has no necessary connection to motion. Consequently, an observer in an observational frame of reference can choose to employ any coordinate system (Cartesian, polar, curvilinear, generalized, ...) to describe observations made from that frame of reference. A change in the choice of this coordinate system does not change an observer's state of motion, and so does not entail a change in the observer's observational frame of reference. This viewpoint can be found elsewhere as well. Which is not to dispute that some coordinate systems may be a better choice for some observations than are others.
A coordinate system in mathematics is a facet of geometry or of algebra, in particular, a property of (for example, in physics, configuration spaces or ).According to Hawking and Ellis: "A manifold is a space locally similar to Euclidean space in that it can be covered by coordinate patches. This structure allows differentiation to be defined, but does not distinguish between different coordinate systems. Thus, the only concepts defined by the manifold structure are those that are independent of the choice of a coordinate system." A mathematical definition is: A connected Hausdorff space M is called an n -dimensional manifold if each point of M is contained in an open set that is homeomorphic to an open set in Euclidean n -dimensional space. The coordinates of a point r in an n-dimensional space are simply an ordered set of n numbers:See Encarta definition. Archived 2009-10-31.
In a general Banach space, these numbers could be (for example) coefficients in a functional expansion like a Fourier series. In a physical problem, they could be spacetime coordinates or normal mode amplitudes. In a Robotics, they could be angles of relative rotations, linear displacements, or deformations of joints. Here we will suppose these coordinates can be related to a Cartesian coordinate system by a set of functions:
where x, y, z, etc. are the n Cartesian coordinates of the point. Given these functions, coordinate surfaces are defined by the relations:
The intersection of these surfaces define coordinate lines. At any selected point, tangents to the intersecting coordinate lines at that point define a set of basis vectors { e1, e2, ..., en} at that point. That is:
which can be normalized to be of unit length. For more detail see curvilinear coordinates.
Coordinate surfaces, coordinate lines, and basis vectors are components of a coordinate system. If the basis vectors are orthogonal at every point, the coordinate system is an orthogonal coordinate system.
An important aspect of a coordinate system is its metric tensor gik, which determines the arc length ds in the coordinate system in terms of its coordinates:
where repeated indices are summed over.
As is apparent from these remarks, a coordinate system is a Model theory, part of an axiomatic system. There is no necessary connection between coordinate systems and physical motion (or any other aspect of reality). However, coordinate systems can include time as a coordinate, and can be used to describe motion. Thus, Lorentz transformations and Galilean transformations may be viewed as coordinate transformations.
There are two types of observational reference frame: inertial and non-inertial. An inertial frame of reference is defined as one in which all laws of physics take on their simplest form. In special relativity these frames are related by Lorentz transformations, which are parametrized by rapidity. In Newtonian mechanics, a more restricted definition requires only that Newton's first law holds true; that is, a Newtonian inertial frame is one in which a free particle travels in a straight line at constant speed, or is at rest. These frames are related by Galilean transformations. These relativistic and Newtonian transformations are expressed in spaces of general dimension in terms of representations of the Poincaré group and of the Galilean group.
In contrast to the inertial frame, a non-inertial frame of reference is one in which must be invoked to explain observations. An example is an observational frame of reference centered at a point on the Earth's surface. This frame of reference orbits around the center of the Earth, which introduces the fictitious forces known as the Coriolis force, centrifugal force, and gravitational force. (All of these forces including gravity disappear in a truly inertial reference frame, which is one of free-fall.)
In physics experiments, the frame of reference in which the laboratory measurement devices are at rest is usually referred to as the laboratory frame or simply "lab frame." An example would be the frame in which the detectors for a particle accelerator are at rest. The lab frame in some experiments is an inertial frame, but it is not required to be (for example the laboratory on the surface of the Earth in many physics experiments is not inertial). In particle physics experiments, it is often useful to transform energies and momenta of particles from the lab frame where they are measured, to the center of momentum frame "COM frame" in which calculations are sometimes simplified, since potentially all kinetic energy still present in the COM frame may be used for making new particles.
In this connection it may be noted that the clocks and rods often used to describe observers' measurement equipment in thought, in practice are replaced by a much more complicated and indirect metrology that is connected to the nature of the vacuum, and uses atomic clocks that operate according to the Standard Model and that must be corrected for gravitational time dilation. (See second, meter and kilogram).
In fact, Einstein felt that clocks and rods were merely expedient measuring devices and they should be replaced by more fundamental entities based upon, for example, atoms and molecules.See .
|
|